

Multiscale Investigation of Microbial Biodiversity in Trans-Atlantic Dust Plumes

Hosein Foroutan, Virginia Tech

Project Overview

Overarching Goal: To improve our understanding of microbial long-range transport and survival in dust plumes.

Interdisciplinary Approach: Integrate multiplatform satellite observations, as well as multiscale reanalysis and atmospheric simulation data with microbiological tools to bridge dust aerosols transport and microbial biodiversity in the atmosphere.

Updates since October 2022

- One manuscript is published:
 - Pretorius et al., 2023. "In the Wind: Invasive Species Travel along Predictable Atmospheric Pathways." Ecological Applications 33(3): e2806.
- Two manuscripts are submitted:
 - Mardi et al. "Long-Term Seasonal Trends in Sources and Pathways of Trans-Atlantic Dust Plumes and their Implications for Transport of Microorganisms"
 - Jarvis et al. "Atmospheric transport structures tied to the 'Godzilla' dust event"

Sampling Dust and Microbes: Coordinated Sampling

NASA ACTIVATE Campaign

University of La Laguna, Tenerife

Barbados Atmospheric Chemistry Observatory, Univ. of Miami

Sampling Dust and Microbes: June 2022 Dust Plume

Sampling Dust and Microbes: Ongoing Analysis

The Hovmöller diagram of dust plume evolution from June $1^{st}-25^{th}$. Circles indicate the collected air filter samples and are color coded by campaigns.

Graphical summaries of 16S taxa collected from different locations at the level of phylum.

(Caution: Preliminary results!)